Software and Architectures

for Large-Scale Quantum Computing
Symposinm in honor of Paul Bentoff’s fundamental

contributions in quantum information

Fred Chong @A(i@

Seymour Goodman Professor of Computer Architecture X
Department of Computer Science
University of Chicago A

» Los Alamos
NATIONAL LABORATORY
EST.1943

with Ken Brown, Margaret Martonosi, Diana Franklin, Isaac Chuang,
John Reppy, Ali Javadi Abhari, Jeff Heckey, Daniel Kudrow,
Shruti Patil, Adam Holmes, Alexey Lvov, Sergey Bravyi
(GATech, Princeton, UChicago, MIT, IBM)

' This Talk

m A futuristic systems perspective

o Scalable architectures to guide
device development il o ﬂd Hum sm

o Software systems to enable pre-
machine, large-scale applications
work
= Eg. 10° increase in efficiency

in quantum chemistry (Microsoft)
[arXiv:1403.1539v2]

o Apply tools and ideas to 100-qubit
machine

Progress in QC Algorithms

300

2 250 /

‘%’ 200 /

S 150 /

-

£ 100

S,

< 50
O_ I I |
1980 1990 2000 2010 2020

Year

http://math.nist.gov/quantum/zoo/

‘ Outline

m Lessons Learned

o Specialization for reliability, parallelism, and
performance

o Managing compiler resources for deep
optimization
o Dynamic code generation for arbitrary rotations

m Future research
o Retarget SW tools for surface codes
o Validation of quantum programs
o What can we do with a 100-qubit machine? (CACM 2010)

F. Chong -- QC 4

LESSON 1: SPECIALIZATION

=

-.’.
n:-a»‘
B s
W

“Quantum FPGA”

Classical Control Processors

Classical Control Processors

[Metodi et al, Micro05]

‘ Limited Parallelism

60 Unlimited resources -
— 15 operations in parallel
3
- |
©
¥
©
p_‘ -
=
-
" |
=
o)
-
IS
©
u
Q
0, -
@)

5 10 15 20
Time in Cycles
O The Draper

Carry-Lookahead Adder (64-qubit Adder)

‘ Specialization

-

Ancilla : Data
21

Compute Block

.

Ancilla : Data
1:8

Memory Block

W,

I Logical Data Qubits

Logical Ancilla Qubits

‘ Area Reduced

B AreaReduced [Perf.Change

10.0 -
7.4
6.6

65 e
o
|
9
&
£ 30 |

.05 S =

64-bit 256-bit 512-bit 1024-bit
Shor’s Alg. Adder Input Size

‘ Faster Computation

1 logical qubit O

\

Level 1:
7 physical qubits 0000000

Level 2:
49 physical qubits

Reliability increases
doubly
exponentially.

Exponentially
slower.

Exponentially
greater resources.

Concatenated Steane Code

l

10

‘ Error-Correction Hierarchy

Cache @ Level 1 /Compute @ Level 1

l

T I A S T T T 109 74 e T O T T e e
e,

~~
Compute Block

[Thaker et al, ISCA 2006] 1

‘ Performance Benefits

Factor of

10

(o))

N

256-bit 512-bit 1024-bit

Shor’s Alg. Adder Input Size

® Area Reduced

® Perf. Change

B Hierarchy: Area Reduced
Hierarchy: Perf. Change

12

LESSION 2:
MANAGING COMPILER

RESOURCES j

‘ Deep Optimization

s QC similar to circuit synthesis for ASICs

= Program inputs known at compile time

o Enables compiler optimizations
= Constant propagation
= Loop unrolling

m Scarce resources
o Every qubit and gate is important

06:20 14

‘ Execution Model

‘ The Scattold LLanguage and Compiler

s Extended C
: 1 #include "gates.h"
o No pointers 2 module main () {
Quantum datatypes int i=0;
, greg extarget[4];
Extensible gates qreg excontrol[4]:
Parallel loops

forall(i=0; i<4; i++) {
_ _ CNOT (extarget[i],excontroll[i]);
Reversible logic)
synthesis for }
classical functions
(includes fixed point
arithmetic)

©OoONO OLHA~, W

[Heckey et al, ASPLOS 2015] 16

Tool Flow

a|npayas [eaisAud g

Physical
Backend

ﬁ J9ZIwndo uonedIunwWwo)

4

A
ﬁ uoljesausn INSYO [eo1sAud

ﬁ Ja|npayos [eaisAud m_ >

—>

—>

UOISIBAUOD) 8}ecr) juela|o] -}jne

t

=

=

=3

_ g
_ g
| 003 10 sejEIS 0167 J¢>
_ g
_ g

weibold wnjueny) pjoyeos

Architectural Simulator

LLVM Infrastructure

17

https://github.com/epiqc/ScaffCC

06:20

| Algorithms in Scaffold

Algorithm

Boolean Formula

Linear Systems

Binary Welded Tree

Class Number

Triangle Finding

Shortest Vector Problem

Ground State Estimation

Shor’s Algorithm

Grover’s Algorithm (invert SHA-1)
Ising Model

Lines of
Code

479
1741
608
226
1231
539
554
1055
388
113

18

‘ Tool Output: Resource Estimation

= Binary Welded Tree Call Graph

o Shows quantum resources used at each module
o Maximum qubits used: 911 (for n=300)

SETCHILD

19

‘ Effect of Remodularization

Based on resource
analysis, flatten
modules with size
less than a
threshold

Limited by memory
on compilation
machine

Critical Path Length Estimate

(# Gates)

3.00E+09

2.50E+09

2.00E+09

1.50E+09

1.00E+09

5.00E+08

0.00E+00

1.20E+04

1.00E+04

8.00E+03

6.00E+03

- 4.00E+03

- 2.00E+03

1k 10k 100k m 12Mm
Flattening Threshold for Remodularization

Binary Welded Tree n=300, s=1000

- 0.00E+00

Peak Memory Usage (MB)

‘ Mapping Qubits

1.2

0.8

0.6

0.4

0.2 -

Manhattan Cost
(optimized layout vs. non-optimized layout)

Grovers BWT GSE BF TFP

= Modified heuristic graph partitioner
o based on Metis [Karypis and Kumar, 19935]

Shors

21

‘ Longest Path First Scheduling

Strategy: Minimize qubit motion
by assigning long dependence
chains to a single compute region,
where they can compute locally
with little communication.

‘ Tool Output: Speedup Estimates

[y
S

[y
N

[
o

o

(=)}

~

Speedup over Sequential Execution

N
!

o
1

CN Grovers GSE SHA1 Shors
Benchmarks

B Multi-SIMD (4,1) B Multi-SIMD (4,4) B Multi-SIMD (4,64)

TFP

06:20

23

‘ Small-Scale Simulation Path

s Simulation effort at TU Delft
s Takes Scaffold QASM output
= Optimized for Intel supercomputing resources
http://www.Xxpu-project.net/gx/download.html
s Other closed-source tools: LIQU|d>
http://qithub.com/msr-quarc/Liquid

'i';U Delft (I@

https://qgithub.com/epiqc/ScaffCC ”

LESSON 3:
DYNAMIC CODE
GENERATION

06:20

25

‘ Quantum Code Generation for
Arbitrary Rotations

m Arbitrary rotations are important, difficult to
compile for, and expensive to execute

= Unique sequence for every distinct rotation
o Can be 4 TB of code!

s Sometimes need dynamic code generation
o Rotation angles determined at runtime
a Large code size

[Kudrow et al, ISCA 2013]

26

‘ Dynamic Code Generation

27

06:20

Rotation Decomposition

H gate
T gate
X gate
H gate
Tt gate

Rotation Decomposition

Scaffold QPL QASM

module RotatePhi(gbit q) { module RotatePhi(gbit q) {

Rz(q, Phi);«_ Tq

} Rotation gate Z q

Tq\

Zq Decomposition

‘ Precomputed Library

Example: binary construction

Generate library: Concatenate appropriate sequences

to approximate desired angle:

THT,ZTZH,..

‘ Results — Compilation Time

Compilation time (seconds)

10 |

0.1

0.01 |
0.001 ¢
0.0001 f
le-05 |
le-06 |
1le-07 |
le-08 |

Solovay-Kitaev ® Library Construction ~——d—
SQCT H

I I .
- ‘:l..“.'_'&

<. < < < < <, <.] e} o o]
SA A [SA e, e, Q, o, - g g /
Y Yo 9% 9% 9 9% 9% 9), X

Accuracy of approximation

‘ Results — Compilation Time

Compilation time (seconds)

10

0.1 ¢

0.01
0.001
0.0001

le-05 ¢}
le-06 |
le-07 ¢

1e-08

Solovay-Kitaev O Library Construction ~——d—
SQCT

lon Trap

ol L

' Neutral Atom"” éﬂ -
_‘T"'_Lm.“ng]

' Superconductor "'"‘Thﬂ

Photons

Ahss aa Mmﬁﬁr“

< < < < < < < o o o o
Q. e, e, A A SN A geo) O 0 4

Accuracy of approximation

‘ Dynamic Compilation Summary

Up to 100,000X speedup for dynamic
compilation with 5X increase in sequence
length (T-gate depth)

FUTURE WORK 1:
TARGETING
SURFACE CODES

06:20

34

Surface vs Concatenated Codes

m Less sensitive to communication distance

m Sensitive to braid crossings
a Serializes communication
o Qubit mapping for locality is important

s Network routing heuristics for scalable
scheduling

o N AN
e N
r'-lﬂ-'x.v s iR
L T
| W)U)
LAY - ¥ N e
— =
s i AT
P = N
s i o
SN N
\¥ - A g/
\§ I § S
1 L] AN
s | = W s
i
> = 2 T
= A ./
\=——=
= N as
= e
=L T = S N
= S5 S
N NS
N K R
= @0 50
e —
@

06:20 35

FUTURE WORK 2:
PROGRAM CORRECTNESS

How do I know if my QC program is
correct?

m Need: Specification language for QC
algorithms

s Check implementation against the
specification
o Simulation for small problem sizes (~30
qubits)
Symbolic execution for larger problems
Type systems
Model checking
o Certified compilation passes
s Compiler checks general quantum
properties
o No-cloning, entanglement, uncomputation
m Checks based on programmer assertions
where possible

0 0 O

FUTURE WORK 3:
ENABLING A PRACTICAL-
SCALE QUANTUM
COMPUTER (EPIQC)

“Practical” Quantum Computing

m Algorithms and Software for a 100-qubit
quantum computer

a Chong, Reppy, Franklin, Schuster (UChicago),
Shor, Farhi, Harrow (MIT), Brown (GATech),
Harlow (UCSB)

m Fill the gap between theory and experiment

o Expose physical effects to software and
algorithms

o Exhaustive optimizations
o Compiler analysis and partial simulation
for correctness

(Schuster Lab)
> = i

39

‘ Summary

s QC is at an exciting time

m Software and architecture can generate key
insights and accelerate progress

= With the right models and abstractions,
classical techniques can have significant
impact

https://qgithub.com/epiqc/ScaffCC
http://people.cs.uchicago.edu/~ftchong |

06:20 40

